论文标题

3D面部匹配通过螺旋卷积度量学习和人口统计学特性的生物识别融合网

3D Facial Matching by Spiral Convolutional Metric Learning and a Biometric Fusion-Net of Demographic Properties

论文作者

Mahdi, Soha Sadat, Nauwelaers, Nele, Joris, Philip, Bouritsas, Giorgos, Gong, Shunwang, Bokhnyak, Sergiy, Walsh, Susan, Shriver, Mark D., Bronstein, Michael, Claes, Peter, .

论文摘要

面部识别是一种广泛接受的生物识别验证工具,因为面部包含有关人身份的大量信息。在这项研究中,提出了一条两步基于神经的管道,将3D面部形状与多个与DNA相关的特性(性别,年龄,BMI和基因组背景)相匹配。第一步由一个基于三重损失的度量学习者组成,该指标学习者将面部形状压缩到较低的维度嵌入中,同时保留有关感兴趣属性的信息。公制学习领域的大多数研究仅集中在2D欧几里得数据上。在这项工作中,几何深度学习被用来直接从3D面部网格中学习。为此,将螺旋卷积与一种新型的网格采样方案一起使用,该方案保留在不同级别的分辨率下均匀采样3D点。第二步是通过完全连接的神经网络进行多种测量融合。该网络将嵌入式和属性标签的集合作为输入,并返回真正的和冒名顶替的分数。由于嵌入被接受为输入,因此无需训练不同属性的分类器,并且可以更有效地使用可用数据。通过10倍的交叉验证获得的生物识别验证获得的结果表明,将多个性质结合起来会导致更强的生物识别系统。此外,所提出的基于神经的管道的表现优于线性基线,该基线由主成分分析组成,然后用线性支持向量机和基于天真的贝叶斯的得分符号进行分类。

Face recognition is a widely accepted biometric verification tool, as the face contains a lot of information about the identity of a person. In this study, a 2-step neural-based pipeline is presented for matching 3D facial shape to multiple DNA-related properties (sex, age, BMI and genomic background). The first step consists of a triplet loss-based metric learner that compresses facial shape into a lower dimensional embedding while preserving information about the property of interest. Most studies in the field of metric learning have only focused on 2D Euclidean data. In this work, geometric deep learning is employed to learn directly from 3D facial meshes. To this end, spiral convolutions are used along with a novel mesh-sampling scheme that retains uniformly sampled 3D points at different levels of resolution. The second step is a multi-biometric fusion by a fully connected neural network. The network takes an ensemble of embeddings and property labels as input and returns genuine and imposter scores. Since embeddings are accepted as an input, there is no need to train classifiers for the different properties and available data can be used more efficiently. Results obtained by a 10-fold cross-validation for biometric verification show that combining multiple properties leads to stronger biometric systems. Furthermore, the proposed neural-based pipeline outperforms a linear baseline, which consists of principal component analysis, followed by classification with linear support vector machines and a Naive Bayes-based score-fuser.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源