论文标题

使用低质量和高质量的RGB-D传感器自制深度降解

Self-supervised Depth Denoising Using Lower- and Higher-quality RGB-D sensors

论文作者

Shabanov, Akhmedkhan, Krotov, Ilya, Chinaev, Nikolay, Poletaev, Vsevolod, Kozlukov, Sergei, Pasechnik, Igor, Yakupov, Bulat, Sanakoyeu, Artsiom, Lebedev, Vadim, Ulyanov, Dmitry

论文摘要

移动设备中嵌入的消费级深度摄像机和深度传感器可实现许多应用程序,例如AR游戏和面部识别。但是,捕获深度的质量有时不足以用于3D重建,跟踪和其他计算机视觉任务。在本文中,我们提出了一种自我监督的深度Denoising方法,以使其来自低质量传感器的深度和完善深度。我们以未齐集的下和更高质量的相机记录了RGB-D序列,并解决了在时间和空间上对齐序列的具有挑战性的问题。然后,我们学习一个深层神经网络,以使用匹配的高质量数据作为监督信号来源,以降低质量的深度。我们在实验中验证了我们的方法,以防止基于最新的过滤和深层降解技术,并显示了其对3D对象重建任务的应用,在这些任务中,我们的方法会导致更详细的融合表面和更好的跟踪。

Consumer-level depth cameras and depth sensors embedded in mobile devices enable numerous applications, such as AR games and face identification. However, the quality of the captured depth is sometimes insufficient for 3D reconstruction, tracking and other computer vision tasks. In this paper, we propose a self-supervised depth denoising approach to denoise and refine depth coming from a low quality sensor. We record simultaneous RGB-D sequences with unzynchronized lower- and higher-quality cameras and solve a challenging problem of aligning sequences both temporally and spatially. We then learn a deep neural network to denoise the lower-quality depth using the matched higher-quality data as a source of supervision signal. We experimentally validate our method against state-of-the-art filtering-based and deep denoising techniques and show its application for 3D object reconstruction tasks where our approach leads to more detailed fused surfaces and better tracking.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源