论文标题

XCM:多元时间序列分类的可解释的卷积神经网络

XCM: An Explainable Convolutional Neural Network for Multivariate Time Series Classification

论文作者

Fauvel, Kevin, Lin, Tao, Masson, Véronique, Fromont, Élisa, Termier, Alexandre

论文摘要

在过去的十年中,多变量时间序列(MTS)分类随着多个域中的时间数据集数量的增加而变得非常重要。当前最新的MTS分类器是一种重量级深度学习方法,它的表现仅在大型数据集上优于第二好的MTS分类器。此外,这种深度学习方法无法提供忠实的解释,因为它依赖于事后模型不可解释的方法,这可以阻止其在众多应用中使用。在本文中,我们提出了XCM,这是一种可解释的用于MTS分类的卷积神经网络。 XCM是一种新型紧凑型卷积神经网络,可直接从输入数据中提取相对于观察到的变量的信息。因此,XCM体系结构可以在大型和小数据集上具有良好的概括能力,同时可以通过精确识别观察到的输入数据的观察到的变量和时间戳记,从而完全利用忠实的事后特定于模型的特定于模型的解释性方法(梯度加权类激活映射),这对于预测很重要。我们首先表明XCM在大型和小型UEA数据集上都优于最先进的MTS分类器。然后,我们说明了XCM在合成数据集上如何核对性能和解释性,并表明XCM可以更精确地识别输入数据区域,这对于预测与当前的深度学习MTS分类器相比,这对于预测很重要,还提供了忠实的解释性。最后,我们介绍了XCM如何在现实世界应用程序上胜过当前最准确的最新算法,同时通过提供忠实和信息丰富的解释来增强解释性。

Multivariate Time Series (MTS) classification has gained importance over the past decade with the increase in the number of temporal datasets in multiple domains. The current state-of-the-art MTS classifier is a heavyweight deep learning approach, which outperforms the second-best MTS classifier only on large datasets. Moreover, this deep learning approach cannot provide faithful explanations as it relies on post hoc model-agnostic explainability methods, which could prevent its use in numerous applications. In this paper, we present XCM, an eXplainable Convolutional neural network for MTS classification. XCM is a new compact convolutional neural network which extracts information relative to the observed variables and time directly from the input data. Thus, XCM architecture enables a good generalization ability on both large and small datasets, while allowing the full exploitation of a faithful post hoc model-specific explainability method (Gradient-weighted Class Activation Mapping) by precisely identifying the observed variables and timestamps of the input data that are important for predictions. We first show that XCM outperforms the state-of-the-art MTS classifiers on both the large and small public UEA datasets. Then, we illustrate how XCM reconciles performance and explainability on a synthetic dataset and show that XCM enables a more precise identification of the regions of the input data that are important for predictions compared to the current deep learning MTS classifier also providing faithful explainability. Finally, we present how XCM can outperform the current most accurate state-of-the-art algorithm on a real-world application while enhancing explainability by providing faithful and more informative explanations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源