论文标题
有限的GK维尼古尔斯代数和标准类型
Finite GK-Dimensional pre-Nichols algebras of super and standard type
论文作者
论文摘要
我们证明,超级和标准类型的有限GK维尼古尔代数是相应杰出的尼古尔代数的商的商,除非编织矩阵是超级A型,并且编织矢量空间的尺寸为三。对于这两个例外,我们通过一个变量中的多项式环明确将替代物作为编织的尼古尔代数的编织中心扩展。通过效率化,这提供了有限的GK维HOPF代数的新示例。
We prove that finite GK-dimensional pre-Nichols algebras of super and standard type are quotients of the corresponding distinguished pre-Nichols algebras, except when the braiding matrix is of type super A and the dimension of the braided vector space is three. For these two exceptions we explicitly construct substitutes as braided central extensions of the corresponding pre-Nichols algebras by a polynomial ring in one variable. Via bosonization this gives new examples of finite GK-dimensional Hopf algebras.