论文标题
Demailly的猜想和遏制问题
Demailly's Conjecture and the Containment Problem
论文作者
论文摘要
我们调查了DeMailly对一般多个积分的一般猜想。 Demailly的猜想概括了Chudnovsky的猜想,即为射影空间中一组点的Waldschmidt常数提供了下限。我们还研究了Harbourne和Huneke猜想的符号和普通力量之间的遏制,特别意味着Demailly的界限,并证明该遏制的一般版本具有通用的决定性理想,并定义了星形配置的理想。
We investigate Demailly's Conjecture for a general set of sufficiently many points. Demailly's Conjecture generalizes Chudnovsky's Conjecture in providing a lower bound for the Waldschmidt constant of a set of points in projective spaces. We also study a containment between symbolic and ordinary powers conjectured by Harbourne and Huneke that in particular implies Demailly's bound, and prove that a general version of that containment holds for generic determinantal ideals and defining ideals of star configurations.