论文标题

快速K分段的一种新的启发式算法

A new heuristic algorithm for fast k-segmentation

论文作者

Vadarevu, Sabarish, Karamcheti, Vijay

论文摘要

视频流的$ k $分段用于将其划分为$ k $分段线性段,以便每个线性段都有有意义的解释。这种细分可用于使用一小部分图像来汇总大型视频,以识别细分市场中的异常和更改点之间的异常,并选择用于培训机器学习模型的关键子集。文献中存在$ k $ - 细分的精确和近似细分方法。这些算法中的每一个在计算复杂性和准确性之间的权衡中都占有不同的位置。本文提出了一种新型的启发式算法,以改善现有方法。从经验上发现,它以计算费用的一部分提供精确的方法提供精确的竞争。 新算法的灵感来自劳埃德(Lloyd)的k-means算法和标量量化的劳埃德·马克斯(Lloyd-Max)算法,为了方便起见,称为LM算法。它通过迭代地将任何给定初始化的成本函数最小化而起作用;本文选择了常用的$ L_2 $成本。虽然贪婪的最小化使算法对初始化敏感,但是从任何初始猜测转换为本地最佳限度的能力允许将算法集成到其他现有算法中。在大量合成数据集上测试了该算法的三种变体,一个是独立的LM实现,另外两个与现有算法结合在一起。后两种 - LM增强底部的分割 - 发现所有算法之间具有最佳准确性和最低的计算复杂性。 LM的这种变体可以在几秒钟内提供多达一百万张图像框架的数据集,以提供$ K $的细分。

The $k$-segmentation of a video stream is used to partition it into $k$ piecewise-linear segments, so that each linear segment has a meaningful interpretation. Such segmentation may be used to summarize large videos using a small set of images, to identify anomalies within segments and change points between segments, and to select critical subsets for training machine learning models. Exact and approximate segmentation methods for $k$-segmentation exist in the literature. Each of these algorithms occupies a different spot in the trade-off between computational complexity and accuracy. A novel heuristic algorithm is proposed in this paper to improve upon existing methods. It is empirically found to provide accuracies competitive with exact methods at a fraction of the computational expense. The new algorithm is inspired by Lloyd's algorithm for K-Means and Lloyd-Max algorithm for scalar quantization, and is called the LM algorithm for convenience. It works by iteratively minimizing a cost function from any given initialisation; the commonly used $L_2$ cost is chosen in this paper. While the greedy minimization makes the algorithm sensitive to initialisation, the ability to converge from any initial guess to a local optimum allows the algorithm to be integrated into other existing algorithms. Three variants of the algorithm are tested over a large number of synthetic datasets, one being a standalone LM implementation, and two others that combine with existing algorithms. One of the latter two -- LM-enhanced-Bottom-Up segmentation -- is found to have the best accuracy and the lowest computational complexity among all algorithms. This variant of LM can provide $k$-segmentations over data sets with up to a million image frames within several seconds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源