论文标题
对角线和一个 - 含量张量产品
Diagonals and A-infinity Tensor Products
论文作者
论文摘要
扩展Saneblidze-bumble等人的工作,我们使用对角线对斜体和多额外的人来定义一个含有代数的代数,模块,代数同构和模块形态的张量产品双面张量产品。然后,我们给出了一个代数的1参数变形的类似定义;这涉及另一个复合物的集合。这些结构与接壤的Heegaard浮子同源性有关。
Extending work of Saneblidze-Umble and others, we use diagonals for the associahedron and multiplihedron to define tensor products of A-infinity algebras, modules, algebra homomorphisms, and module morphisms, as well as to define a bimodule analogue of twisted complexes (type DD structures, in the language of bordered Heegaard Floer homology) and their one- and two-sided tensor products. We then give analogous definitions for 1-parameter deformations of A-infinity algebras; this involves another collection of complexes. These constructions are relevant to bordered Heegaard Floer homology.