论文标题
整个曲线在复杂的投影空间中的球形衍生物的属性
A property of the spherical derivative of an entire curve in complex projective space
论文作者
论文摘要
我们在$ p^n(\ mathbb c)$中为整个曲线建立了一种类型的PICARD定理,其球形衍生物在超脸靶标的逆图像上消失了。然后,作为推论,我们证明在复杂的投影空间中有一个有限数量的超曲面$ p^n(\ mathbb c)$,这样,对于整个曲线$ f $ in $ p^n(\ mathbb c)$中的每个曲线$ f $ $ f^{\#} $在整个复杂平面上都有界限,因此,$ f $是Brody曲线。
We establish a type of the Picard's theorem for entire curves in $P^n(\mathbb C)$ whose spherical derivative vanishes on the inverse images of hypersurface targets. Then, as a corollary, we prove that there is an union $D$ of finite number of hypersurfaces in the complex projective space $P^n(\mathbb C)$ such that for every entire curve $f$ in $P^n(\mathbb C)$, if the spherical derivative $f^{\#}$ of $f$ is bounded on $ f^{-1}(D)$, then $f^{\#}$ is bounded on the entire complex plane, and hence, $f$ is a Brody curve.