论文标题

关于从移动网络运营商数据估算空间密度的估计

On the estimation of spatial density from mobile network operator data

论文作者

Ricciato, Fabio, Coluccia, Angelo

论文摘要

我们解决了从移动网络运营商(MNO)数据中估算手机空间分布的问题,即呼叫详细记录(CDR)或信号数据。将MNO数据转换为密度图的过程需要将无线电细胞进行地理分配以确定其空间足迹。传统的地理位置解决方案依赖于Voronoi镶嵌和相互不相交区域的近似细胞足迹。最近,一些开创性的工作开始考虑更精细的地理位置方法,其中部分重叠(非分散)细胞足迹以及用于手机之间的概率模型的模型。当前,估计这种概率设置中的空间密度是一个开放的研究问题,并且是当前工作的重点。我们首先回顾文献中提出的三种不同的估计方法,并提供新颖的分析见解,以揭示其相互关系和特性的某些关键方面。此外,我们开发了一种新颖的估计方法,可以为其提供封闭形式的解决方案。提出了基于半合成数据的数值结果,以评估每种方法的相对准确性。我们的结果表明,基于重叠单元的估计器具有基于Voronoi Tessellations的传统方法的空间准确性的潜力。

We tackle the problem of estimating the spatial distribution of mobile phones from Mobile Network Operator (MNO) data, namely Call Detail Record (CDR) or signalling data. The process of transforming MNO data to a density map requires geolocating radio cells to determine their spatial footprint. Traditional geolocation solutions rely on Voronoi tessellations and approximate cell footprints by mutually disjoint regions. Recently, some pioneering work started to consider more elaborate geolocation methods with partially overlapping (non-disjoint) cell footprints coupled with a probabilistic model for phone-to-cell association. Estimating the spatial density in such a probabilistic setup is currently an open research problem and is the focus of the present work. We start by reviewing three different estimation methods proposed in literature and provide novel analytical insights that unveil some key aspects of their mutual relationships and properties. Furthermore, we develop a novel estimation approach for which a closed-form solution can be given. Numerical results based on semi-synthetic data are presented to assess the relative accuracy of each method. Our results indicate that the estimators based on overlapping cells have the potential to improve spatial accuracy over traditional approaches based on Voronoi tessellations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源