论文标题

半监督的活跃学习,用于19.肺超声多伴随分类

Semi-Supervised Active Learning for COVID-19 Lung Ultrasound Multi-symptom Classification

论文作者

Liu, Lei, Lei, Wentao, Luo, Yongfang, Feng, Cheng, Wan, Xiang, Liu, Li

论文摘要

超声(US)是一种非侵入性但有效的医学诊断成像技术,可用于COVID-19的全球大流行。但是,由于美国图像的复杂特征行为和昂贵的注释,很难将人工智能(AI)辅助方法应用于肺部的多肌(多标签)分类。为了克服这些困难,我们提出了一种新型的半监督两流活动学习(TSAL)方法,以模拟复杂的特征并在迭代过程中降低标签成本。 TSAL的核心组成部分是多标签的学习机制,其中标签相关信息用于设计多标签边距(MLM)策略(MLM)策略和置信度验证,以自动选择信息性示例和自信标签。在此基础上,提出了多个多标签(MSML)分类网络以学习肺症状的判别特征,并利用人机相互作用来确认用于微调MSML的最终注释,这些注释与逐渐标记的数据进行微调。此外,建立了一个名为Covid19-Lusms的新型肺US数据集,目前包含71名临床患者,其中6,836张图像从678个视频中采样。实验评估表明,仅使用20%数据的TSAL可以实现比基线和最先进的绩效。定性地,注意图和样本分布的可视化证实了与临床知识的良好一致性。

Ultrasound (US) is a non-invasive yet effective medical diagnostic imaging technique for the COVID-19 global pandemic. However, due to complex feature behaviors and expensive annotations of US images, it is difficult to apply Artificial Intelligence (AI) assisting approaches for lung's multi-symptom (multi-label) classification. To overcome these difficulties, we propose a novel semi-supervised Two-Stream Active Learning (TSAL) method to model complicated features and reduce labeling costs in an iterative procedure. The core component of TSAL is the multi-label learning mechanism, in which label correlations information is used to design multi-label margin (MLM) strategy and confidence validation for automatically selecting informative samples and confident labels. On this basis, a multi-symptom multi-label (MSML) classification network is proposed to learn discriminative features of lung symptoms, and a human-machine interaction is exploited to confirm the final annotations that are used to fine-tune MSML with progressively labeled data. Moreover, a novel lung US dataset named COVID19-LUSMS is built, currently containing 71 clinical patients with 6,836 images sampled from 678 videos. Experimental evaluations show that TSAL using only 20% data can achieve superior performance to the baseline and the state-of-the-art. Qualitatively, visualization of both attention map and sample distribution confirms the good consistency with the clinic knowledge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源