论文标题

哈密​​顿流量图的符号高斯过程回归

Symplectic Gaussian Process Regression of Hamiltonian Flow Maps

论文作者

Rath, Katharina, Albert, Christopher G., Bischl, Bernd, von Toussaint, Udo

论文摘要

我们提出了一种为哈密顿流量图构造适当有效的仿真器的方法。未来预期的应用是在加速器和磁等离子体约束构型中快速充电颗粒的长期追踪。该方法基于分散训练数据上的多输出高斯过程回归。为了获得长期稳定性,通过选择基质值协方差函数来实现符号性能。基于较早的样条插值工作,我们观察了规范转换的生成函数的衍生物。产品内核会产生一种准确的隐式方法,而总和内核可以从这种方法中获得快速的显式方法。在数值集成方面,两者都对应于符号的Euler方法。与正交多项式的对称回归相比,这些方法应用于摆和Hénon-Heiles系统和结果。在小型映射时间的限制中,可以通过一部分生成函数来识别哈密顿函数,从而从系统演化的观察到的时间序列数据中学到了学到的东西。除了与现有方法相比,我们证明了学习哈密顿功能的性能大幅提高,除了隐式内核和光谱回归的可比性能外,我们还证明了其性能的大幅提高。

We present an approach to construct appropriate and efficient emulators for Hamiltonian flow maps. Intended future applications are long-term tracing of fast charged particles in accelerators and magnetic plasma confinement configurations. The method is based on multi-output Gaussian process regression on scattered training data. To obtain long-term stability the symplectic property is enforced via the choice of the matrix-valued covariance function. Based on earlier work on spline interpolation we observe derivatives of the generating function of a canonical transformation. A product kernel produces an accurate implicit method, whereas a sum kernel results in a fast explicit method from this approach. Both correspond to a symplectic Euler method in terms of numerical integration. These methods are applied to the pendulum and the Hénon-Heiles system and results compared to an symmetric regression with orthogonal polynomials. In the limit of small mapping times, the Hamiltonian function can be identified with a part of the generating function and thereby learned from observed time-series data of the system's evolution. Besides comparable performance of implicit kernel and spectral regression for symplectic maps, we demonstrate a substantial increase in performance for learning the Hamiltonian function compared to existing approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源