论文标题
互补数值集
Complementary Numerical Sets
论文作者
论文摘要
数值集$ s $是包含$ 0 $的$ \ mathbb {n} $的cofinite子集。我们使用数值集和Young图之间的自然培训来定义数字集$ \ widetilde {s} $,以使它们的年轻图是补充。我们确定了$ \ widetilde {s} $的各种属性,尤其是在添加下关闭(对于$ s $和$ \ wideTilde {s} $)的关闭,该{s} $ {s} $)促进了数值集成为数值半群。
A numerical set $S$ is a cofinite subset of $\mathbb{N}$ which contains $0$. We use the natural bijection between numerical sets and Young diagrams to define a numerical set $\widetilde{S}$, such that their Young diagrams are complements. We determine various properties of $\widetilde{S}$, particularly with an eye to closure under addition (for both $S$ and $\widetilde{S}$), which promotes a numerical set to become a numerical semigroup.