论文标题

神经语义角色标签的语法角色

Syntax Role for Neural Semantic Role Labeling

论文作者

Li, Zuchao, Zhao, Hai, He, Shexia, Cai, Jiaxun

论文摘要

语义角色标签(SRL)致力于识别句子的语义谓词题材结构。先前关于传统模型的研究表明,句法信息可以为SRL性能做出显着贡献。然而,句法信息的必要性受到一些最近的神经SRL研究的挑战,这些神经SRL研究表明没有句法骨架,表现出令人印象深刻的性能,并暗示语法信息对于神经语义角色的角色标记而言变得不那么重要,尤其是当与最近的深层神经网络和大型的大规模的预培养语言模型配对时。尽管有这样的概念,但神经SRL领域仍然缺乏对SRL句法信息相关性的系统性和全面研究,对于依赖性以及单语言和多语言环境。本文旨在量化在深度学习框架中句法信息对神经SRL的重要性。我们介绍了三个典型的SRL框架(基线),基于序列的,基于树和图形,它们伴随着两类利用语法信息:基于语法的基于语法和基于语法的特征。实验是在所有可用语言的Conll-2005、2009和2012基准上进行的,结果表明,神经SRL模型仍然可以在某些条件下从句法信息中受益。此外,我们展示了语法对神经SRL模型的定量意义,以及使用现有模型进行彻底的经验调查。

Semantic role labeling (SRL) is dedicated to recognizing the semantic predicate-argument structure of a sentence. Previous studies in terms of traditional models have shown syntactic information can make remarkable contributions to SRL performance; however, the necessity of syntactic information was challenged by a few recent neural SRL studies that demonstrate impressive performance without syntactic backbones and suggest that syntax information becomes much less important for neural semantic role labeling, especially when paired with recent deep neural network and large-scale pre-trained language models. Despite this notion, the neural SRL field still lacks a systematic and full investigation on the relevance of syntactic information in SRL, for both dependency and both monolingual and multilingual settings. This paper intends to quantify the importance of syntactic information for neural SRL in the deep learning framework. We introduce three typical SRL frameworks (baselines), sequence-based, tree-based, and graph-based, which are accompanied by two categories of exploiting syntactic information: syntax pruning-based and syntax feature-based. Experiments are conducted on the CoNLL-2005, 2009, and 2012 benchmarks for all languages available, and results show that neural SRL models can still benefit from syntactic information under certain conditions. Furthermore, we show the quantitative significance of syntax to neural SRL models together with a thorough empirical survey using existing models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源