论文标题
关于蒙哥马利和Soundararajan的猜想
On a conjecture of Montgomery and Soundararajan
论文作者
论文摘要
我们为所有加权时刻设定了较低的次数,即使是$ x $的时间,最多x $,这与蒙哥马利和Soundararajan的猜想一致。我们的界限无条件地符合$ x $的无限值集,并在Riemann假设下持有所有$ x $。我们还针对经典的素数功能推导了新的无条件$ω$ - $ results。
We establish lower bounds for all weighted even moments of primes up to $X$ in intervals which are in agreement with a conjecture of Montgomery and Soundararajan. Our bounds hold unconditionally for an unbounded set of values of $X$, and hold for all $X$ under the Riemann Hypothesis. We also deduce new unconditional $Ω$-results for the classical prime counting function.