论文标题

配体的定向自我组装散装有机 - 气门/量子点混合膜可实现三胞胎激子的定量收获

Ligand Directed Self-Assembly of Bulk Organic-Semiconductor/Quantum-Dot Blend Films Enables Near Quantitative Harvesting of Triplet Excitons

论文作者

Allardice, Jesse, Gray, Victor, Dowland, Simon, Toolan, Daniel T. W., Weir, Michael P., Xiao, James, Zhang, Zhilong, Winkel, Jurjen F., Petty II, Anthony J., Anthony, John, Friend, Richard, Ryan, Anthony J., Jones, Richard A. L., Greenham, Neil C., Rao, Akshay

论文摘要

有机半导体中发生的激子乘法过程Singlet Pission(SF)提供了一种打破单频隙光伏(PV)中的冲击式式式限制的方法。如果可以将SF产生的三胞胎激子转移到无机量子点(QDS)中,则可以将基于SF的光子乘法辐射重组,从而将单个高能光子转换为两个低功能的光子。这样的SF光子乘法膜(SF-PMF)可以将最佳SI-PV的效率从26.7%提高到32.5%。但是,在这样的薄膜中,需要精确的纳米级形态,该薄膜由有机相的适当形态组成,允许有效的SF,其中QD发射器在数十nm长度尺度上很好地分散以实现有效收获三联。然而,由于其大小,形状和表面能的不匹配,有机-QD混合物中的个体组件具有聚集和相分离的趋势,这是一个长期存在的问题。在这里,我们使用具有电子活性的高度溶剂半导体配体的QD表面工程方法,该方法与SF材料相匹配,这使我们能够指导自组装工艺屈服于具有良好的QD和最小聚集的溶液处理膜,如X射线和中子和中子和电子显微镜表征,表现为最小。稳态和时间分辨的光谱表明,在有机相-QD界面上,膜在有机相和定量三重态转移中支持有效的SF(190%的产率),从而导致95%的三胞胎激子被QD收获。我们的结果将SF-PMF建立为一种高度有希望的结构,以利用SF工艺来提高PV效率,并提供了一种高度用途的方法来克服有机半导体与QD的混合在一起的挑战。

Singlet fission (SF), an exciton multiplication process occurring in organic semiconductors, offers a way to break the Shockley-Queisser limit in single-bandgap photovoltaics (PV). If the triplet excitons generated by SF can be transferred to inorganic quantum dots (QDs), where they radiatively recombine, SF based photon multiplication is achieved, converting a single high-energy photon into two low-energy photons. Such a SF photon multiplication film (SF-PMF) could raise the efficiency of the best Si-PV from 26.7% to 32.5%. But a precise nanoscale morphology is required within such a film consisting of the appropriate morphology for the organic phase, allowing for efficient SF, within which the QD emitters are well dispersed on a tens of nm length scale to enable efficient harvesting of the triplets. However, it has been a long-standing problem that the individual components in organic-QD blends have a tendency to aggregate and phase separate, due to a mismatch of their size, shape and surface energies. Here, we demonstrate a QD surface engineering approach using an electronically active, highly soluble semiconductor ligand that is matched to the SF material, which allows us to direct the self-assembly process yielding solution processed films with well-dispersed QDs and minimal aggregation, as characterised by X-ray and neutron scattering and electron microscopy. Steady state and time-resolved optical spectroscopy show that the films support efficient SF (190% yield) in the organic phase and quantitative triplet energy transfer across the organic-QD interface, resulting in 95% of the triplet excitons being harvested by the QDs. Our results establish the SF-PMF as a highly promising architecture to harness the SF process to enhance PV efficiencies, and also provide a highly versatile approach to overcome challenges in the blending of organic semiconductors with QDs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源