论文标题
$ \ mathbb {p}^3 $在五重式曲面上的ACM线捆绑包的特征
The characterization of aCM line bundles on quintic hypersurfaces in $\mathbb{P}^3$
论文作者
论文摘要
令$ x $为$ \ mathbb {p}^3 $中的平滑Quintic Hypersurface,让$ c $为$ x $的平滑超平面部分,让$ h = \ mathcal {o} _x(c)$。在本文中,我们为$ x $上的非零有效除数给出的线束提供了必要的条件,以初始化$ h $。
Let $X$ be a smooth quintic hypersurface in $\mathbb{P}^3$, let $C$ be a smooth hyperplane section of $X$, and let $H=\mathcal{O}_X(C)$. In this paper, we give a necessary and sufficient condition for the line bundle given by a non-zero effective divisor on $X$ to be initialized and aCM with respect to $H$.