论文标题

多通道MRI嵌入:一种有效的术,用于增强人脑全图分割

Multi-channel MRI Embedding: An EffectiveStrategy for Enhancement of Human Brain WholeTumor Segmentation

论文作者

Pandya, Apurva, Samuel, Catherine, Patel, Nisargkumar, Patel, Vaibhavkumar, Akilan, Thangarajah

论文摘要

医学图像处理中最重要的任务之一是大脑的整个肿瘤分割。它有助于更​​快地进行临床评估和对脑肿瘤的早期检测,这对于患者的救生治疗程序至关重要。因为,如果在早期发现脑肿瘤,通常可能是恶性的或良性的。脑肿瘤是大脑中的集合或异常细胞。人类头骨非常严格地包围了大脑,并且在这个受限制的地方内部的任何增长都会引起严重的健康问题。脑肿瘤的检测需要进行手术计划和治疗的仔细分析。大多数医生采用磁共振成像(MRI)来诊断此类肿瘤。已知对使用MRI的肿瘤进行手动诊断是耗时的。大约每个样品最多需要18个小时。因此,肿瘤的自动分割已成为解决此问题的最佳解决方案。研究表明,该技术提供了更好的准确性,并且比手动分析更快,导致患者在适当的时间接受治疗。我们的研究介绍了一种称为多通道MRI嵌入的有效策略,以改善深度学习的肿瘤分割的结果。对BRATS-2019数据集WRT的实验分析U-NET编码器模型(ENDEC)模型显示出显着改善。嵌入策略以提高2%的最新方法,没有任何时间开销。

One of the most important tasks in medical image processing is the brain's whole tumor segmentation. It assists in quicker clinical assessment and early detection of brain tumors, which is crucial for lifesaving treatment procedures of patients. Because, brain tumors often can be malignant or benign, if they are detected at an early stage. A brain tumor is a collection or a mass of abnormal cells in the brain. The human skull encloses the brain very rigidly and any growth inside this restricted place can cause severe health issues. The detection of brain tumors requires careful and intricate analysis for surgical planning and treatment. Most physicians employ Magnetic Resonance Imaging (MRI) to diagnose such tumors. A manual diagnosis of the tumors using MRI is known to be time-consuming; approximately, it takes up to eighteen hours per sample. Thus, the automatic segmentation of tumors has become an optimal solution for this problem. Studies have shown that this technique provides better accuracy and it is faster than manual analysis resulting in patients receiving the treatment at the right time. Our research introduces an efficient strategy called Multi-channel MRI embedding to improve the result of deep learning-based tumor segmentation. The experimental analysis on the Brats-2019 dataset wrt the U-Net encoder-decoder (EnDec) model shows significant improvement. The embedding strategy surmounts the state-of-the-art approaches with an improvement of 2% without any timing overheads.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源