论文标题
限制中子星的质量和半径及其含义
Limiting masses and radii of neutron stars and their implications
论文作者
论文摘要
我们将密度物质状态的方程式结合到两倍的核饱和密度($ n _ {\ rm sat} = 0.16 \,\ \ text {fm}^{ - 3} $),它使用手动有效的现场理论($χ$ eft),以及最新的中性星星的观察,以获得有关高密度的洞察力的洞察力。我们研究中的一个关键要素是,最近对相关的EFT截断错误的贝叶斯分析基于逐订单计算,直到$χ$ eft扩展中的近代到接头订单。我们在高密度下因因果关系而施加的最大质量的界限,并对$ \ sim1.4 \,{\ rm m} _ {\ odot} $和$ \ \ \ sim2.0 \,{\ rm m m} _ {\ rm m} _ {\ odot {\ odot} $ stars {\ odot} $ {\ odot} $ {\ odot} $ {\ odot} $ {\ odot} $ {\ odot} $ {\ odot} $ {包括$ n _ {\ rm sat} $从$ n _ {\ $ 2 \,n _ {\ rm sat} $减少$ 1.4 \,{\ rm m} _ {\ rm m} _ {\ odot} $ r _ 1.4} $ r _ sim $ r _ sim的$ rm {如果观察结果表明$ r_ {1.4} <11.2 \,\ text {km} $,我们的研究意味着声音的平方$ c^2_ {s}> 1/2 $对于密度高于$ 2 \,n _ {\ rm sat} $,或$ eft $ eft $ eft $ eft $ efts $ efts $ efts $ efts $ 2 $ n $ n $ n $ n $ n $ n $ n $ 2 \我们还评论GW190814中次级紧凑型物体的性质,质量$ \ simeq 2.6 \,{\ rm m} _ {\ odot} $,讨论大型中子星$> 2.1 \,{\ rm m} _ {\ rm m} _ {\ odot} M} _ {\ odot})$在未来的无线电和重力波搜索中。与$ c^2_ {s}> 0.35 \,(0.55)$强烈相互作用的物质必须在此类大型中子星的核心中实现。在没有以下$ 2 \,n _ {\ rm sat} $以下的相转换的情况下,从GW170817从GW170817推断出的小潮汐变形性借贷支持了Baryon密度$ N_ {\ rm B} $ n _ {\ rm b} $ in Barge in the Rangage $ 1-2 $ 1-2 \ $ 1-2 \,n-___的相对较小的压力。他们一起暗示,只有在$ n _ {\ rm b} \ gtrsim 1.5-1.8 \,n _ {\ rm sat} $时,才能发生支持高最大质量所需的快速加强。
We combine equation of state of dense matter up to twice nuclear saturation density ($n_{\rm sat}=0.16\, \text{fm}^{-3}$) obtained using chiral effective field theory ($χ$EFT), and recent observations of neutron stars to gain insights about the high-density matter encountered in their cores. A key element in our study is the recent Bayesian analysis of correlated EFT truncation errors based on order-by-order calculations up to next-to-next-to-next-to-leading order in the $χ$EFT expansion. We refine the bounds on the maximum mass imposed by causality at high densities, and provide stringent limits on the maximum and minimum radii of $\sim1.4\,{\rm M}_{\odot}$ and $\sim2.0\,{\rm M}_{\odot}$ stars. Including $χ$EFT predictions from $n_{\rm sat}$ to $2\,n_{\rm sat}$ reduces the permitted ranges of the radius of a $1.4\,{\rm M}_{\odot}$ star, $R_{1.4}$, by $\sim3.5\, \text{km}$. If observations indicate $R_{1.4}<11.2\, \text{km}$, our study implies that either the squared speed of sound $c^2_{s}>1/2$ for densities above $2\,n_{\rm sat}$, or that $χ$EFT breaks down below $2\,n_{\rm sat}$. We also comment on the nature of the secondary compact object in GW190814 with mass $\simeq 2.6\,{\rm M}_{\odot}$, and discuss the implications of massive neutron stars $>2.1 \,{\rm M}_{\odot}\,(2.6\,{\rm M}_{\odot})$ in future radio and gravitational-wave searches. Some form of strongly interacting matter with $c^2_{s}>0.35\, (0.55)$ must be realized in the cores of such massive neutron stars. In the absence of phase transitions below $2\,n_{\rm sat}$, the small tidal deformability inferred from GW170817 lends support for the relatively small pressure predicted by $χ$EFT for the baryon density $n_{\rm B}$ in the range $1-2\,n_{\rm sat}$. Together they imply that the rapid stiffening required to support a high maximum mass should occur only when $n_{\rm B} \gtrsim 1.5-1.8\,n_{\rm sat}$.