论文标题
使用非参数回归模型估算个体治疗效果:综述
Estimating Individual Treatment Effects using Non-Parametric Regression Models: a Review
论文作者
论文摘要
在诸如健康,经济和社会科学等学科中,大量观察数据越来越多,研究人员对因果问题而不是预测感兴趣。在本文中,我们研究了使用基于非参数回归的方法估算异质治疗效果的问题,从一项旨在研究参加学校餐食计划对健康指标的影响的经验研究开始。首先,我们介绍了与观察性或非随机数据进行因果推断有关的设置以及有关的问题,以及如何在统计学习工具的帮助下解决这些问题。然后,我们审查并开发了现有最新框架的统一分类法,这些框架允许通过非参数回归模型进行单个治疗效果估算。在介绍了模型选择问题的简要概述之后,我们说明了三个不同模拟研究的某些方法的性能。最后,我们通过证明对学校进餐计划数据的经验分析中的某些方法的使用。
Large observational data are increasingly available in disciplines such as health, economic and social sciences, where researchers are interested in causal questions rather than prediction. In this paper, we examine the problem of estimating heterogeneous treatment effects using non-parametric regression-based methods, starting from an empirical study aimed at investigating the effect of participation in school meal programs on health indicators. Firstly, we introduce the setup and the issues related to conducting causal inference with observational or non-fully randomized data, and how these issues can be tackled with the help of statistical learning tools. Then, we review and develop a unifying taxonomy of the existing state-of-the-art frameworks that allow for individual treatment effects estimation via non-parametric regression models. After presenting a brief overview on the problem of model selection, we illustrate the performance of some of the methods on three different simulated studies. We conclude by demonstrating the use of some of the methods on an empirical analysis of the school meal program data.