论文标题

带压缩感和加密的节能无线神经记录系统

An Energy-efficient Wireless Neural Recording System with Compressed Sensing and Encryption

论文作者

Liu, Xilin, Richardson, Andrew G., Van der Spiegel, Jan

论文摘要

本文提出了一个无线神经记录系统,具有节能数据压缩和加密。通过利用压缩传感(CS)进行同时数据压缩和加密来实现超高效率。 CS通过利用其内在的稀疏性来实现神经信号的亚nyquist采样。它同时加密数据,采样矩阵是加密密钥。为了通过不安全的无线渠道共享密钥,我们实现了基于椭圆曲线密码学(ECC)的密钥交换协议。 CS操作以180nm CMOS技术制造的自定义设计的IC执行。混合信号电路旨在优化CS操作的矩阵矢量乘法(MVM)的功率效率。 ECC算法在低功率Cortex-M0微控制器(MCU)中实现。要保护不受时间和功率分析攻击,该实施避免了可能的数据依赖分支,并且还采用了随机的ECC初始化。以8倍的压缩率,重建信号和未压缩信号之间的平均相关系数为0.973,而仅密文的仅限攻击(COA)在200,000次攻击中的平均值不得超过0.054。与低功率MCUS中的常规实施相比,该原型可节省35倍的动力。这项工作为未来的慢性神经记录系统提供了有希望的解决方案,该系统在高能效和安全性方面有要求。

This paper presents a wireless neural recording system featuring energy-efficient data compression and encryption. An ultra-high efficiency is achieved by leveraging compressed sensing (CS) for simultaneous data compression and encryption. CS enables sub-Nyquist sampling of neural signals by taking advantage of its intrinsic sparsity. It simultaneously encrypts the data with the sampling matrix being the cryptographic key. To share the key over an insecure wireless channel, we implement an elliptic-curve cryptography (ECC) based key exchanging protocol. The CS operation is executed in a custom-designed IC fabricated in 180nm CMOS technology. Mixed-signal circuits are designed to optimize the power efficiency of the matrix-vector multiplication (MVM) of the CS operation. The ECC algorithm is implemented in a low-power Cortex-M0 microcontroller (MCU). To be protected from timing and power analysis attacks, the implementation avoids possible data-dependent branches and also employs a randomized ECC initialization. At a compression ratio of 8x, the average correlated coefficient between the reconstructed signals and the uncompressed signals is 0.973, while the ciphertext-only attacks (CoA) achieve no better than 0.054 over 200,000 attacks. The prototype achieves a 35x power saving compared with conventional implementation in low-power MCUs. This work demonstrates a promising solution for future chronic neural recording systems with requirements in high energy efficiency and security.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源