论文标题

疾病控制作为优化问题

Disease control as an optimization problem

论文作者

Navascues, Miguel, Budroni, Costantino, Guryanova, Yelena

论文摘要

在流行病学的背景下,疾病控制的政策通常是通过直觉和蛮力的混合来制定的,从而将一组逻辑上可以想象的策略范围缩小到由一些参数描述的小家族,然后使用线性化或网格搜索来确定集合中的最佳策略。该方案有可能为疾病控制更加复杂(甚至可能违反直觉)政策,以更有效地解决该疾病的风险。在本文中,我们使用凸优化理论和机器学习中的技术来对数百个参数描述的疾病政策进行优化。与过去基于控制理论的政策优化方法相反,我们的框架可以在控制疾病传播和随机模型的初始条件和模型参数上处理任意不确定性。此外,我们的方法允许对在每周期间保持恒定的政策进行优化,该政策由连续或离散(例如:开/关)指定的政府措施指定。我们通过最大程度地减少在易感暴露感染的反射(SEIR)模型中消除Covid-19的总时间来说明我们的方法。

In the context of epidemiology, policies for disease control are often devised through a mixture of intuition and brute-force, whereby the set of logically conceivable policies is narrowed down to a small family described by a few parameters, following which linearization or grid search is used to identify the optimal policy within the set. This scheme runs the risk of leaving out more complex (and perhaps counter-intuitive) policies for disease control that could tackle the disease more efficiently. In this article, we use techniques from convex optimization theory and machine learning to conduct optimizations over disease policies described by hundreds of parameters. In contrast to past approaches for policy optimization based on control theory, our framework can deal with arbitrary uncertainties on the initial conditions and model parameters controlling the spread of the disease, and stochastic models. In addition, our methods allow for optimization over policies which remain constant over weekly periods, specified by either continuous or discrete (e.g.: lockdown on/off) government measures. We illustrate our approach by minimizing the total time required to eradicate COVID-19 within the Susceptible-Exposed-Infected-Recovered (SEIR) model proposed by Kissler \emph{et al.} (March, 2020).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源