论文标题

将积聚在Kerr黑洞上

Choked accretion onto a Kerr black hole

论文作者

Aguayo-Ortiz, Alejandro, Sarbach, Olivier, Tejeda, Emilio

论文摘要

窒息的积聚模型由纯流体动力学机制组成,其中通过将赤道至极密度对比度设置为球形对称的积聚流量过渡到流出流出构型。在(非旋转)Schwarzschild Black Hole作为中央增生器以及非相关性极限的情况下,已经研究了这种情况。在本文中,我们通过研究(旋转)Kerr黑洞的完美流体的积聚来概括这些先前的作品。我们首先通过使用稳态的,无旋转的分析解的超层次完美流体来描述该机制,从而遵守状态的僵硬方程。然后,我们使用流体动力学数值模拟,以探索更通用的状态方程。分析黑洞旋转对流动的影响,我们特别发现,cho骨的吸积流出形态对于黑洞的旋转参数的所有可能值占上风,显示了模型的稳健性。

The choked accretion model consists of a purely hydrodynamical mechanism in which, by setting an equatorial to polar density contrast, a spherically symmetric accretion flow transitions to an inflow-outflow configuration. This scenario has been studied in the case of a (non-rotating) Schwarzschild black hole as central accretor, as well as in the non-relativistic limit. In this article, we generalize these previous works by studying the accretion of a perfect fluid onto a (rotating) Kerr black hole. We first describe the mechanism by using a steady-state, irrotational analytic solution of an ultrarelativistic perfect fluid, obeying a stiff equation of state. We then use hydrodynamical numerical simulations in order to explore a more general equation of state. Analyzing the effects of the black hole's rotation on the flow, we find in particular that the choked accretion inflow-outflow morphology prevails for all possible values of the black hole's spin parameter, showing the robustness of the model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源