论文标题

Borel渐近维度和高铁等效关系

Borel asymptotic dimension and hyperfinite equivalence relations

论文作者

Conley, Clinton, Jackson, Steve, Marks, Andrew, Seward, Brandon, Tucker-Drob, Robin

论文摘要

在高限度等效关系理论中,长期存在的开放问题询问了可数的群体的鲍尔(Borel)作用产生的轨道对等关系是否是高限度的。在本文中,我们证明,当代理小组是多环芳烃时,这个问题总是有一个积极的答案,并且我们为包括Lamplighter组在内的大型群体的所有自由行动以及所有具有有限Prüfer等级的可解决的群体获得了积极的答案。这标志着首次已验证了一组指数增长以具有此属性。在获得此结果时,我们引入了一种新的工具来研究鲍洛莫夫(Gromov)的渐近维度概念,以研究鲍尔(Borel)等效关系。我们表明,有限骨渐近维度的可数鲍尔等效关系是高限度的,并且更普遍地证明,在轻度兼容性的假设下,这种等价关系的增加是高限量的。作为我们主要定理的一部分,我们证明了大量可解决的群体的所有自由骨作用都有有限的渐近造剂(以及有限的动态渐近维度,而在连续作用对零维空间的情况下)。我们还为Borel色数,Borel和连续的Folner Tilings,拓扑动态和$ C^*$ - 代数提供应用。

A long standing open problem in the theory of hyperfinite equivalence relations asks if the orbit equivalence relation generated by a Borel action of a countable amenable group is hyperfinite. In this paper we prove that this question always has a positive answer when the acting group is polycyclic, and we obtain a positive answer for all free actions of a large class of groups including the lamplighter group and all virtually solvable groups having finite Prüfer rank. This marks the first time that a group of exponential volume-growth has been verified to have this property. In obtaining this result we introduce a new tool for studying Borel equivalence relations by extending Gromov's notion of asymptotic dimension to the Borel setting. We show that countable Borel equivalence relations of finite Borel asymptotic dimension are hyperfinite, and more generally we prove under a mild compatibility assumption that increasing unions of such equivalence relations are hyperfinite. As part of our main theorem, we prove for a large class of solvable groups that all of their free Borel actions have finite Borel asymptotic dimension (and finite dynamic asymptotic dimension in the case of a continuous action on a zero-dimensional space). We also provide applications to Borel chromatic numbers, Borel and continuous Folner tilings, topological dynamics, and $C^*$-algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源