论文标题

可扩展的光谱Stokes求解器,以模拟复杂几何形状中的时间周期性流量

A scalable spectral Stokes solver for simulation of time-periodic flows in complex geometries

论文作者

Meng, Chenwei, Bhattacharjee, Anirban, Esmaily, Mahdi

论文摘要

传统上,在复杂的几何形状中模拟不稳定的爬行流,需要使用时间步骤的程序,该程序通常是昂贵且不可计入的。为了降低成本并允许在更大尺度上进行计算,我们提出了一种基于时间光谱域中表达的不稳定的Stokes方程制定的替代方法。这种转换导致边界值问题,具有与计算模式成比例的假想源项,该模式使用Bubnov-Galerkin公式在复杂值的有限元求解器中进行离散和求解。这种转变的时空表述比传统时空技术具有多个优点。首先,对于边界条件随时间变化而变化的情况,它可以通过几种模式而不是数千个时间步骤来解决解决方案的时间变化,从而提供了大量的计算成本节省。其次,与具有有限准确性顺序的传统时间集成方案相反,该方法表现出超级收敛行为与计算模式的数量相比。第三,与流体稳定的有限元方法相反,我们的制剂中没有使用稳定项,从而产生了一种稳定且更准确的溶液。第四,由于解决方案模式的独立性,提出的方法在令人尴尬的是可行的,因此可以在大量的处理器上实现可扩展的计算。使用二维规范和复杂的几何形状进行了提出的技术与标准稳定有限元求解器的比较。结果表明,所提出的方法可以在研究案例中以标准技术成本的1%至11%产生更准确的结果。

Simulation of unsteady creeping flows in complex geometries has traditionally required the use of a time-stepping procedure, which is typically costly and unscalable. To reduce the cost and allow for computations at much larger scales, we propose an alternative approach that is formulated based on the unsteady Stokes equation expressed in the time-spectral domain. This transformation results in a boundary value problem with an imaginary source term proportional to the computed mode that is discretized and solved in a complex-valued finite element solver using Bubnov-Galerkin formulation. This transformed spatio-spectral formulation presents several advantages over the traditional spatio-temporal techniques. Firstly, for cases with boundary conditions varying smoothly in time, it provides a significant saving in computational cost as it can resolve time-variation of the solution using a few modes rather than thousands of time steps. Secondly, in contrast to the traditional time integration scheme with a finite order of accuracy, this method exhibits a super convergence behavior versus the number of computed modes. Thirdly, in contrast to the stabilized finite element methods for fluid, no stabilization term is employed in our formulation, producing a solution that is consistent and more accurate. Fourthly, the proposed approach is embarrassingly parallelizable owing to the independence of the solution modes, thus enabling scalable calculations at a much larger number of processors. The comparison of the proposed technique against a standard stabilized finite element solver is performed using two- and three-dimensional canonical and complex geometries. The results show that the proposed method can produce more accurate results at 1% to 11% of the cost of the standard technique for the studied cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源