论文标题

利用机器学习来利用域知识,以进行图像压缩

Leveraging Domain Knowledge using Machine Learning for Image Compression in Internet-of-Things

论文作者

Chakraborty, Prabuddha, Cruz, Jonathan, Bhunia, Swarup

论文摘要

从自动监视到精确农业的各种物联网应用程序(IoT)应用程序中智能边缘设备的新兴生态系统越来越依赖于记录和处理各种图像数据。由于资源限制,例如能源和通信带宽要求,这些应用需要在传输前压缩记录的图像。对于这些应用,图像压缩通常需要:(1)维护粗粒图案识别的功能,而不是由于机器对机器通信而引起的人类感知的高级细节; (2)高压比,从而提高能量和传输效率; (3)压缩因子和重建质量之间的大型动态压缩范围和轻松的权衡,以适应各种物联网应用以及它们随时间变化的能量/性能需求。为了满足这些要求,我们提出了一种新颖的机器学习(ML)指导图像压缩框架,与传统技术相比,它明智地牺牲视觉质量,以达到更高的压缩,同时保持了粗粒度视觉任务的准确性。核心思想是捕获特定于应用程序的领域知识,并有效地利用它来实现高压。我们证明,魔术框架可以在各种压缩/质量上配置,并且能够超出JPEG 2000和WebP的标准质量因子限制。我们使用两个视觉数据集对代表性的物联网应用程序进行实验,并以相似的精度显示高达42.65倍的压缩。与JPEG 2000和WebP相比,我们使用我们的技术突出显示了整个图像的压缩率的较低差异。

The emergent ecosystems of intelligent edge devices in diverse Internet of Things (IoT) applications, from automatic surveillance to precision agriculture, increasingly rely on recording and processing variety of image data. Due to resource constraints, e.g., energy and communication bandwidth requirements, these applications require compressing the recorded images before transmission. For these applications, image compression commonly requires: (1) maintaining features for coarse-grain pattern recognition instead of the high-level details for human perception due to machine-to-machine communications; (2) high compression ratio that leads to improved energy and transmission efficiency; (3) large dynamic range of compression and an easy trade-off between compression factor and quality of reconstruction to accommodate a wide diversity of IoT applications as well as their time-varying energy/performance needs. To address these requirements, we propose, MAGIC, a novel machine learning (ML) guided image compression framework that judiciously sacrifices visual quality to achieve much higher compression when compared to traditional techniques, while maintaining accuracy for coarse-grained vision tasks. The central idea is to capture application-specific domain knowledge and efficiently utilize it in achieving high compression. We demonstrate that the MAGIC framework is configurable across a wide range of compression/quality and is capable of compressing beyond the standard quality factor limits of both JPEG 2000 and WebP. We perform experiments on representative IoT applications using two vision datasets and show up to 42.65x compression at similar accuracy with respect to the source. We highlight low variance in compression rate across images using our technique as compared to JPEG 2000 and WebP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源