论文标题
逃离经常出口产生的吸引子
Escape from an attractor generated by recurrent exit
论文作者
论文摘要
克莱默(Kramer)对潜在障碍的激活理论包括计算从一个随机扰动动力系统吸引盆地边界的平均退出时间。在这里,我们报告说,对于某些系统,越过边界还不够,因为随机轨迹在盆地内部以高概率返回一定次数,然后再逃脱。这种情况是由于浅薄的潜力。我们计算逃生时间的平均值和分布,并显示该结果如何解释神经元网络中爆发持续时间的较大分布。
Kramer's theory of activation over a potential barrier consists in computing the mean exit time from the boundary of a basin of attraction of a randomly perturbed dynamical system. Here we report that for some systems, crossing the boundary is not enough, because stochastic trajectories return inside the basin with a high probability a certain number of times before escaping far away. This situation is due to a shallow potential. We compute the mean and distribution of escape times and show how this result explains the large distribution of interburst durations in neuronal networks.