论文标题
短期突触可塑性在建模某些动态环境中的最佳性
Optimality of short-term synaptic plasticity in modelling certain dynamic environments
论文作者
论文摘要
生物神经元及其对神经形态人工智能(AI)的内在仿真使用了极高的节能机制,例如基于尖峰的通信和局部突触可塑性。目前尚不清楚这些神经元机制是否仅提供效率或基于生物智能的优势。在这里,我们严格地证明,实际上,贝叶斯最佳的预测和推断随机但不断转化的环境(一种常见的自然环境)依赖于短期峰值依赖性依赖性可塑性,这是生物突触的标志。此外,这种动态的贝叶斯通过可塑性推断可以使模拟中的大脑皮层的电路识别以前看不见的,高度扭曲的动态刺激。令人惊讶的是,这也引入了一个生物模型的AI,这是第一个在视觉任务中克服深度学习和超越人造神经网络的多个局限性的。类似皮质的网络是尖峰和基于事件的网络,仅在小型,狭窄且静态的训练数据集上接受无监督和局部可塑性的训练,但是与持续激活的深度神经网络相比,对不看到,转化和动态数据的认识更好,对不断的神经网络更好地训练,对转换数据进行了重新支持。这些结果将短期可塑性与高级皮质功能联系起来,提示自然环境的自然智力最佳,并将神经形态AI从单纯的效率重新效率重新占据至计算至上的最佳状态。
Biological neurons and their in-silico emulations for neuromorphic artificial intelligence (AI) use extraordinarily energy-efficient mechanisms, such as spike-based communication and local synaptic plasticity. It remains unclear whether these neuronal mechanisms only offer efficiency or also underlie the superiority of biological intelligence. Here, we prove rigorously that, indeed, the Bayes-optimal prediction and inference of randomly but continuously transforming environments, a common natural setting, relies on short-term spike-timing-dependent plasticity, a hallmark of biological synapses. Further, this dynamic Bayesian inference through plasticity enables circuits of the cerebral cortex in simulations to recognize previously unseen, highly distorted dynamic stimuli. Strikingly, this also introduces a biologically-modelled AI, the first to overcome multiple limitations of deep learning and outperform artificial neural networks in a visual task. The cortical-like network is spiking and event-based, trained only with unsupervised and local plasticity, on a small, narrow, and static training dataset, but achieves recognition of unseen, transformed, and dynamic data better than deep neural networks with continuous activations, trained with supervised backpropagation on the transforming data. These results link short-term plasticity to high-level cortical function, suggest optimality of natural intelligence for natural environments, and repurpose neuromorphic AI from mere efficiency to computational supremacy altogether.