论文标题
在选择性和平衡表示空间中匹配治疗效果估计
Matching in Selective and Balanced Representation Space for Treatment Effects Estimation
论文作者
论文摘要
在科学和技术的各个领域中,正在见证观察数据的巨大可用性,这有助于研究因果推断。但是,观察数据的估计效果面临两个主要挑战,缺失反事实和治疗选择偏见。匹配方法是估计治疗效果的最广泛使用和最基本的方法之一,但是当面对具有高维和复杂变量的数据时,现有的匹配方法的性能较差。我们建议基于深度表示学习和匹配的特征选择表示匹配(FSRM)方法,该方法将原始协变空间映射到选择性,非线性和平衡表示空间中,然后在学习的表示空间中进行匹配。 FSRM采用深度特征选择,以最大程度地减少无关变量以估算治疗效果的影响,并根据Wasserstein距离纳入正规化器以学习平衡表示。我们在三个数据集上评估了FSRM方法的性能,结果证明了与最新方法相比的优势。
The dramatically growing availability of observational data is being witnessed in various domains of science and technology, which facilitates the study of causal inference. However, estimating treatment effects from observational data is faced with two major challenges, missing counterfactual outcomes and treatment selection bias. Matching methods are among the most widely used and fundamental approaches to estimating treatment effects, but existing matching methods have poor performance when facing data with high dimensional and complicated variables. We propose a feature selection representation matching (FSRM) method based on deep representation learning and matching, which maps the original covariate space into a selective, nonlinear, and balanced representation space, and then conducts matching in the learned representation space. FSRM adopts deep feature selection to minimize the influence of irrelevant variables for estimating treatment effects and incorporates a regularizer based on the Wasserstein distance to learn balanced representations. We evaluate the performance of our FSRM method on three datasets, and the results demonstrate superiority over the state-of-the-art methods.