论文标题
带有空间 - 平方单像素探测器的光学凝视跟踪
Optical Gaze Tracking with Spatially-Sparse Single-Pixel Detectors
论文作者
论文摘要
凝视跟踪是虚拟现实和增强现实应用程序的下一代显示的重要组成部分。已知在下一代显示中使用的传统基于相机的凝视跟踪器缺乏以下指标之一:功耗,成本,计算复杂性,估计精度,延迟和形式因素。我们建议使用离散的光电二极管和发光二极管(LED)作为传统基于相机的凝视跟踪方法的替代方法,同时考虑了所有这些指标。我们首先开发一个基于渲染的仿真框架,以了解光源与虚拟模型眼球之间的关系。该框架的发现用于放置LED和光电二极管。我们的第一个原型使用神经网络在400Hz时获得2.67°的平均错误率,而仅要求16MW。通过简化仅使用LED的实现,将其复制为轻型收发器以及更小的机器学习模型,即一种轻度监督的高斯过程回归算法,我们表明我们的第二个原型能够在250 Hz时使用800 MW在250 Hz时的平均误差率为1.57°。
Gaze tracking is an essential component of next generation displays for virtual reality and augmented reality applications. Traditional camera-based gaze trackers used in next generation displays are known to be lacking in one or multiple of the following metrics: power consumption, cost, computational complexity, estimation accuracy, latency, and form-factor. We propose the use of discrete photodiodes and light-emitting diodes (LEDs) as an alternative to traditional camera-based gaze tracking approaches while taking all of these metrics into consideration. We begin by developing a rendering-based simulation framework for understanding the relationship between light sources and a virtual model eyeball. Findings from this framework are used for the placement of LEDs and photodiodes. Our first prototype uses a neural network to obtain an average error rate of 2.67° at 400Hz while demanding only 16mW. By simplifying the implementation to using only LEDs, duplexed as light transceivers, and more minimal machine learning model, namely a light-weight supervised Gaussian process regression algorithm, we show that our second prototype is capable of an average error rate of 1.57° at 250 Hz using 800 mW.