论文标题

跨跨域中的用户偏好的等效转换建议

Towards Equivalent Transformation of User Preferences in Cross Domain Recommendation

论文作者

Chen, Xu, Zhang, Ya, Tsang, Ivor, Pan, Yuangang, Su, Jingchao

论文摘要

跨域推荐(CDR)是推荐系统中的一个流行研究主题。本文重点介绍了CDR的流行方案,其中不同的域共享同一组用户,但没有重叠的项目。最近的大多数方法都探索了共享用户表示以跨领域传输知识。但是,共享用户表示的想法是学习用户偏好的重叠功能并抑制特定于领域的功能。其他作品试图通过MLP映射来捕获特定领域的特征,但需要启发式人类知识来选择样品来训练映射。在本文中,我们试图以更有原则的方式学习用户偏好的两个功能。我们假设每个域中的每个用户的偏好都可以由另一个域表示,并且这些偏好可以通过所谓的等效转换相互转换。基于此假设,我们提出了一个等效的转换学习者(ETL),该转换者对跨域的用户行为的联合分布进行了建模。 ETL中的等效转换放松了共享用户表示的概念,并允许不同域中的学习偏好保留特定于域的特征以及重叠的特征。与最新的最新方法相比,对三个公共基准的广泛实验证明了ETL的有效性。代码和数据可在线获得:〜\ url {https://github.com/xuchensjtu/etl-master}

Cross domain recommendation (CDR) is one popular research topic in recommender systems. This paper focuses on a popular scenario for CDR where different domains share the same set of users but no overlapping items. The majority of recent methods have explored the shared-user representation to transfer knowledge across domains. However, the idea of shared-user representation resorts to learn the overlapped features of user preferences and suppresses the domain-specific features. Other works try to capture the domain-specific features by an MLP mapping but require heuristic human knowledge of choosing samples to train the mapping. In this paper, we attempt to learn both features of user preferences in a more principled way. We assume that each user's preferences in one domain can be expressed by the other one, and these preferences can be mutually converted to each other with the so-called equivalent transformation. Based on this assumption, we propose an equivalent transformation learner (ETL) which models the joint distribution of user behaviors across domains. The equivalent transformation in ETL relaxes the idea of shared-user representation and allows the learned preferences in different domains to preserve the domain-specific features as well as the overlapped features. Extensive experiments on three public benchmarks demonstrate the effectiveness of ETL compared with recent state-of-the-art methods. Codes and data are available online:~\url{https://github.com/xuChenSJTU/ETL-master}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源