论文标题
全球感知的光束搜索神经抽象摘要
Global-aware Beam Search for Neural Abstractive Summarization
论文作者
论文摘要
这项研究开发了一种校准的基于光束的算法,对神经抽象摘要的全球注意力分布有意识,旨在以严格的方式改善原始光束搜索的本地最佳问题。具体而言,提出了一种新型的全球协议,该协议是基于注意力分布来规定全球最佳假设应如何处理来源的。然后开发出一种全球评分机制来调节光束搜索,以几乎全球最佳方式生成摘要。这种新颖的设计具有独特的特性,即可以在推断之前预测全球注意力分布,从而通过全球评分机制对横梁搜索进行逐步改进。在九个数据集上进行的广泛实验表明,即使使用经验超参数,全局(注意)的推理也会显着改善最新的摘要模型。该算法也被证明是可靠的,因为它仍然是生成具有损坏的注意力分布的有意义的文本。提供了代码和一组示例。
This study develops a calibrated beam-based algorithm with awareness of the global attention distribution for neural abstractive summarization, aiming to improve the local optimality problem of the original beam search in a rigorous way. Specifically, a novel global protocol is proposed based on the attention distribution to stipulate how a global optimal hypothesis should attend to the source. A global scoring mechanism is then developed to regulate beam search to generate summaries in a near-global optimal fashion. This novel design enjoys a distinctive property, i.e., the global attention distribution could be predicted before inference, enabling step-wise improvements on the beam search through the global scoring mechanism. Extensive experiments on nine datasets show that the global (attention)-aware inference significantly improves state-of-the-art summarization models even using empirical hyper-parameters. The algorithm is also proven robust as it remains to generate meaningful texts with corrupted attention distributions. The codes and a comprehensive set of examples are available.