论文标题

深度学习的次级进化参数的星号推断

Asteroseismic Inference of Subgiant Evolutionary Parameters with Deep Learning

论文作者

Hon, Marc, Bellinger, Earl P., Hekker, Saskia, Stello, Dennis, Kuszlewicz, James S.

论文摘要

随着对NASA苔丝任务中预期的前所未有的振荡次级恒星的观察,次巨星的星号表征将是恒星种群研究和测试我们恒星进化理论的重要任务。为了有效地确定大量次恒星样本的基本特性,我们开发了一种深度学习方法,该方法通过从八个物理参数中的恒星模型中学习,估计了在广泛的输入物理学上年龄和质量等基本参数(如年龄和质量)的分布。我们将方法应用于四个开普勒子巨星,并将结果与​​先前确定的估计值进行比较。我们的结果表明,与以前三个的估计值相吻合(KIC 11026764,KIC 10920273,KIC 11395018)。有了能够探索广泛的恒星参数的能力,我们确定剩余的恒星KIC 10005473可能比以前确定的估计值年轻1年龄。我们的方法还估算了超弹,次数和微观扩散过程的效率,我们从中确定控制此类过程的参数通常在次级模型中构成很差。我们通过表征30个开普勒次巨星样本的样本来进一步证明我们的方法对集合的星空学的实用性,在该样本中,我们发现我们的年龄,质量和半径估计的大部分估计是在不确定性的基于计算昂贵的网格建模技术中同意的。

With the observations of an unprecedented number of oscillating subgiant stars expected from NASA's TESS mission, the asteroseismic characterization of subgiant stars will be a vital task for stellar population studies and for testing our theories of stellar evolution. To determine the fundamental properties of a large sample of subgiant stars efficiently, we developed a deep learning method that estimates distributions of fundamental parameters like age and mass over a wide range of input physics by learning from a grid of stellar models varied in eight physical parameters. We applied our method to four Kepler subgiant stars and compare our results with previously determined estimates. Our results show good agreement with previous estimates for three of them (KIC 11026764, KIC 10920273, KIC 11395018). With the ability to explore a vast range of stellar parameters, we determine that the remaining star, KIC 10005473, is likely to have an age 1 Gyr younger than its previously determined estimate. Our method also estimates the efficiency of overshooting, undershooting, and microscopic diffusion processes, from which we determined that the parameters governing such processes are generally poorly-constrained in subgiant models. We further demonstrate our method's utility for ensemble asteroseismology by characterizing a sample of 30 Kepler subgiant stars, where we find a majority of our age, mass, and radius estimates agree within uncertainties from more computationally expensive grid-based modelling techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源