论文标题
schrödinger热半群的衰减估计值,在洛伦兹空间中具有逆平方电位
Decay estimates for Schrödinger heat semigroup with inverse square potential in Lorentz spaces
论文作者
论文摘要
令$ h:= - δ+v $是$ l^2({\ bf r}^n)$上的非负Schrödinger操作员,其中$ n \ ge 2 $和$ v $是平方势的相反平方电位。在本文中,我们获得了$ e^{ - th} $和$ \ nabla e^{ - th} $的运算符规范的尖锐衰减估计。
Let $H:=-Δ+V$ be a nonnegative Schrödinger operator on $L^2({\bf R}^N)$, where $N\ge 2$ and $V$ is an inverse square potential. In this paper we obtain sharp decay estimates of the operator norms of $e^{-tH}$ and $\nabla e^{-tH}$ in Lorentz spaces.