论文标题
奇异轨道和面包师域
Singular orbits and Baker domains
论文作者
论文摘要
我们表明,具有不变的面包域$ u $的先验杂种功能,使每个单一值的$ f $都是超吸引人的周期性点。这回答了从1993年开始的伯格威勒人的问题。我们还表明,可以选择$ u $包含以确定模量为中心的任意大圆形环体。这回答了Mihaljević和2013年作者的一个问题,并为Barański等人关于这个问题的最新工作提供了补充。
We show that there is a transcendental meromorphic function with an invariant Baker domain $U$ such that every singular value of $f$ is a super-attracting periodic point. This answers a question of Bergweiler from 1993. We also show that $U$ can be chosen to contain arbitrarily large round annuli, centred at zero, of definite modulus. This answers a question of Mihaljević and the author from 2013, and complements recent work of Barański et al concerning this question.