论文标题

惰性素数及其应用的不平等

Inequalities for inert primes and their applications

论文作者

He, Zilong

论文摘要

对于任何给定的非方面整数$ d \ equiv 0,1 \ pmod {4} $,我们证明了Euclid的类型不等式,用于序列$ \ {q_ {q_ {i} \} $的所有优点的所有优点,满足Kronecker符号$的所有数量三元二次形式是一种不规则的应用,这简化了迪克森和琼斯在一定程度上对常规三元二次形式的分类中的论点。

For any given non-square integer $ D\equiv 0,1 \pmod{4} $, we prove Euclid's type inequalities for the sequence $ \{q_{i}\} $ of all primes satisfying the Kronecker symbol $ (D/q_{i})=-1 $, $ i=1,2,\cdots, $ and give a new criterion on a ternary quadratic form to be irregular as an application, which simplifies Dickson and Jones's argument in the classification of regular ternary quadratic forms to some extent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源