论文标题
六边形对称性的纳米晶体材料的有效刚度张量的原子和平均场估计值
Atomistic and mean-field estimates of effective stiffness tensor of nanocrystalline materials of hexagonal symmetry
论文作者
论文摘要
纳米粒多晶的各向异性核心壳模型扩展以估计几种六边形晶体晶格对称性的几种金属的有效弹性刚度。在该方法中,大量纳米晶体材料被描述为具有不同特性的两相培养基,用于晶界和晶芯。尽管晶芯是各向异性的,但边界区是各向同性的,其厚度由所考虑金属的相应原子电位的截止半径定义。通过使用大规模原子/分子大规模平行模拟器,嵌入的原子模型和分子静态方法进行的模拟进行了验证,对所提出的曲线模型的预测进行了验证。分析了晶粒尺寸对纳米晶体材料的总体弹性模量具有随机分布的影响。
Anisotropic core-shell model of a nano-grained polycrystal is extended to estimate the effective elastic stiffness of several metals of hexagonal crystal lattice symmetry. In the approach the bulk nanocrystalline material is described as a two-phase medium with different properties for a grain boundary zone and a grain core. While the grain core is anisotropic, the boundary zone is isotropic and has a thickness defined by the cutoff radius of a corresponding atomistic potential for the considered metal. The predictions of the proposed meanfield model are verified with respect to simulations performed with the use of the Large-scale Atomic/Molecular Massively Parallel Simulator, the Embedded Atom Model, and the molecular statics method. The effect of the grain size on the overall elastic moduli of nanocrystalline material with random distribution of orientations is analysed.