论文标题
使用具有不同混杂因子数量的神经网络对一般治疗效应的因果推断
Causal Inference of General Treatment Effects using Neural Networks with A Diverging Number of Confounders
论文作者
论文摘要
半参数有效估计各种多价值因果关系(包括分位数治疗效应)在经济,生物医学和其他社会科学中很重要。在不足的条件下,对混杂因素的调整需要估计与混杂因素非参数相关的滋扰功能或治疗相关的滋扰功能。本文考虑了使用人工神经网络(ANN)有效地估算一般治疗效应的广义优化框架,以近似生长维度混杂因素的未知滋扰功能。我们为ANN建立了一个新的近似误差,即属于混合平滑度类的滋扰函数,而没有已知的稀疏结构。我们表明,在这种情况下,ANN可以减轻“维度的诅咒”。我们建立了拟议的一般治疗效果估计器的根源 - $ n $一致性和渐近态性,并应用加权的自举程序进行推理。提出的方法通过仿真研究和真实的数据应用进行说明。
Semiparametric efficient estimation of various multi-valued causal effects, including quantile treatment effects, is important in economic, biomedical, and other social sciences. Under the unconfoundedness condition, adjustment for confounders requires estimating the nuisance functions relating outcome or treatment to confounders nonparametrically. This paper considers a generalized optimization framework for efficient estimation of general treatment effects using artificial neural networks (ANNs) to approximate the unknown nuisance function of growing-dimensional confounders. We establish a new approximation error bound for the ANNs to the nuisance function belonging to a mixed smoothness class without a known sparsity structure. We show that the ANNs can alleviate the "curse of dimensionality" under this circumstance. We establish the root-$n$ consistency and asymptotic normality of the proposed general treatment effects estimators, and apply a weighted bootstrap procedure for conducting inference. The proposed methods are illustrated via simulation studies and a real data application.