论文标题

兰道问题和非古典性

The Landau Problem and non-Classicality

论文作者

Petronilo, G. X. A., Ulhoa, S. C., Araújo, K. V. S., Paiva, R. A. S., Amorim, R. G. G., Santana, A. E.

论文摘要

探索扩展的Galilei组G。在符号歧管中的现场理论表示,已与Wigner函数的方法相关。表示形式以五个维度的DE Sitter时空的轻锥编写。建造了希尔伯特空间,并具有符号结构,该结构被用作G的Lie代数的表示空间。该表示形式引起了波动在相位空间中波函数的Spin-ZeroSeroSchrödinger(klein-gordon样)方程,从而使依赖性变量具有位置和线性动量的内容。这是共形理论的一个特殊示例,使得波函数与Wigner函数通过Moyal产品相关联。我们以显式协变形式在相空间中构建Pauli-Schrödinger(类似狄拉克的)方程。此外,我们分析了相空间中自旋1/2颗粒的规格对称性,并显示了在这种情况下如何实现最小耦合。我们应用于外场中电子的问题,并恢复了非相关的兰道水平。最后,我们研究了与系统的非经典性相关的消极性参数。

Exploring the concept of the extended Galilei group G. Representations for field theories in a symplectic manifold have been derived in association with the method of the Wigner function. The representation is written in the light-cone of a de Sitter space-time in five dimensions. A Hilbert space is constructed, endowed with a symplectic structure, which is used as a representation space for the Lie algebra of G. This representation gives rise to the spin-zero Schrödinger (Klein-Gordon-like) equation for the wave functions in phase space, such that the dependent variables have the content of position and linear momentum. This is a particular example of a conformal theory, such that the wave functions are associated with the Wigner function through the Moyal product. We construct the Pauli-Schrödinger (Dirac-like) equation in phase space in its explicitly covariant form. In addition, we analyze the gauge symmetry for spin 1/2 particles in phase space and show how to implement the minimal coupling in this case. We applied to the problem of an electron in an external field, and we recovered the non-relativistic Landau Levels. Finally, we study the parameter of negativity associated with the non-classicality of the system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源