论文标题
GIM:GPU加速基于RIS的影响最大化算法
gIM: GPU Accelerated RIS-based Influence Maximization Algorithm
论文作者
论文摘要
鉴于一个以加权图$ g $为模型的社交网络,影响最大化问题会寻求$ k $的顶点最初受到影响,以最大程度地提高特定扩散模型下的预期影响节点的预期数量。影响最大化问题已被证明是NP - hard,并且最大的解决方案是近似贪婪的算法,可以保证其相对于最佳解决方案的结果可调节近似值。最先进的算法基于反向影响采样(RIS)技术,该技术可以提供计算效率和非平凡$(1- \ frac {1} {1} {e}-ε)$ - 近似值保证任何$ε> 0 $。基于RIS的算法与其他方法相比,尽管其计算成本较低,但仍需要长时间的运行时间来解决$ε$的大规模图中的问题。在本文中,我们提出了一种基于RIS的算法的新颖而有效的并行实现,即INM在GPU上。所提出的名为GIM的GPU加速影响最大化算法可以显着缩短$ε$的大规模图上的运行时间。此外,我们表明GIM算法只能通过应用小修改来解决IM问题的其他变化。实验结果表明,所提出的解决方案将运行时降低了$ 220 \ times $。 GIM的源代码在线公开可用。
Given a social network modeled as a weighted graph $G$, the influence maximization problem seeks $k$ vertices to become initially influenced, to maximize the expected number of influenced nodes under a particular diffusion model. The influence maximization problem has been proven to be NP-hard, and most proposed solutions to the problem are approximate greedy algorithms, which can guarantee a tunable approximation ratio for their results with respect to the optimal solution. The state-of-the-art algorithms are based on Reverse Influence Sampling (RIS) technique, which can offer both computational efficiency and non-trivial $(1-\frac{1}{e}-ε)$-approximation ratio guarantee for any $ε>0$. RIS-based algorithms, despite their lower computational cost compared to other methods, still require long running times to solve the problem in large-scale graphs with low values of $ε$. In this paper, we present a novel and efficient parallel implementation of a RIS-based algorithm, namely IMM, on GPU. The proposed GPU-accelerated influence maximization algorithm, named gIM, can significantly reduce the running time on large-scale graphs with low values of $ε$. Furthermore, we show that gIM algorithm can solve other variations of the IM problem, only by applying minor modifications. Experimental results show that the proposed solution reduces the runtime by a factor up to $220 \times$. The source code of gIM is publicly available online.