论文标题
二维准线性双曲方程的点和接触等效群
Point and contact equivalence groupoids of two-dimensional quasilinear hyperbolic equations
论文作者
论文摘要
我们描述了重要类别的二维准双曲线方程的点和接触等效组。特别是,我们证明了该类别在点转换方面是按通常的意义提高的,并且其接触等效群是由其点等效群体的一阶延长,波浪方程的触点顶点组和一个微不足道的darboux-integrable方程之间的接触式可接受转换而产生的。
We describe the point and contact equivalence groupoids of an important class of two-dimensional quasilinear hyperbolic equations. In particular, we prove that this class is normalized in the usual sense with respect to point transformations, and its contact equivalence groupoid is generated by the first-order prolongation of its point equivalence groupoid, the contact vertex group of the wave equation and a family of contact admissible transformations between trivially Darboux-integrable equations.