论文标题
Kerr非线性与均匀分散的相互作用:无限层次结构
The interaction of Kerr nonlinearity with even-orders of dispersion: an infinite hierarchy of solitons
论文作者
论文摘要
颞孤子是由负组速度分散和自相度调制的平衡产生的光脉冲。几十年来,只考虑了二次分散体,高阶分散体被认为是滋扰。在最近对纯四分之一孤子的报道之后,我们在这里为无限层次结构提供了实验性和数值证据,这些孤儿平衡了自相度调制和任意负面的纯纯,均匀级别的分散体。具体而言,我们在实验上证明了具有纯隔($β_6$),-octic($β_8$)和-decic($β__{10} $)分散的孤子,仅受我们的组件的性能的限制,并显示出涉及纯$ 16^^$ 16^^$ rm的数值证据。相分辨的时间和光谱表征表明,这些脉冲随着分散顺序表现出越来越多的光谱平坦度。测得的能量宽度缩放定律提出了超短脉冲的巨大优势。这些结果扩大了对孤子的基本了解,并为非线性光学及其应用中的工程师超快脉冲提供了新的途径。
Temporal solitons are optical pulses that arise from the balance of negative group-velocity dispersion and self-phase modulation. For decades only quadratic dispersion was considered, with higher order dispersion thought of as a nuisance. Following the recent reporting of pure-quartic solitons, we here provide experimental and numerical evidence for an infinite hierarchy of solitons that balance self-phase modulation and arbitrary negative pure, even-order dispersion. Specifically, we experimentally demonstrate the existence of solitons with pure-sextic ($β_6$), -octic ($β_8$) and -decic ($β_{10}$) dispersion, limited only by the performance of our components, and show numerical evidence for the existence of solitons involving pure $16^{\rm th}$ order dispersion. Phase-resolved temporal and spectral characterization reveals that these pulses, exhibit increasing spectral flatness with dispersion order. The measured energy-width scaling laws suggest dramatic advantages for ultrashort pulses. These results broaden the fundamental understanding of solitons and present new avenues to engineer ultrafast pulses in nonlinear optics and its applications.