论文标题

以自我为中心的照片流中的饮食习惯发现

Eating Habits Discovery in Egocentric Photo-streams

论文作者

Talavera, Estefania, Glavan, Andreea, Matei, Alina, Radeva, Petia

论文摘要

饮食习惯是在我们生活的整个阶段中学到的。但是,意识到我们与食物相关的常规如何影响我们健康的生活并不容易。在这项工作中,我们无法从以自我为中心的照片流中发现营养习惯。我们建立了与食物相关的行为模式发现模型,该模型揭示了整个日子所做的活动的营养常规。为此,我们依靠动态时间锻炼来评估收集到的几天之间的相似性。在此框架内,我们提出了一个简单但坚固且快速的新型分类管道,该管道的表现优于食品相关图像分类的最新时间,分别具有加权精度和70%和63%的F评分。后来,我们确定了由营养活动组成的日子,这些营养活动并未将人的习惯描述为用户使用隔离森林法的日常生活中的异常。此外,当相机佩戴者隔离时,我们展示了识别与食物相关的场景的申请。结果表明,提出的模型的良好表现及其与可视化个人营养习惯的相关性。

Eating habits are learned throughout the early stages of our lives. However, it is not easy to be aware of how our food-related routine affects our healthy living. In this work, we address the unsupervised discovery of nutritional habits from egocentric photo-streams. We build a food-related behavioural pattern discovery model, which discloses nutritional routines from the activities performed throughout the days. To do so, we rely on Dynamic-Time-Warping for the evaluation of similarity among the collected days. Within this framework, we present a simple, but robust and fast novel classification pipeline that outperforms the state-of-the-art on food-related image classification with a weighted accuracy and F-score of 70% and 63%, respectively. Later, we identify days composed of nutritional activities that do not describe the habits of the person as anomalies in the daily life of the user with the Isolation Forest method. Furthermore, we show an application for the identification of food-related scenes when the camera wearer eats in isolation. Results have shown the good performance of the proposed model and its relevance to visualize the nutritional habits of individuals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源