论文标题

Microquasar GRS的X射线变异类别的非线性数学模型1915+105-II:过渡和摇摆类

A non-linear mathematical model for the X-ray variability classes of the microquasar GRS 1915+105 -- II: transition and swaying classes

论文作者

Massaro, E., Capitanio, F., Feroci, M., Mineo, T., Ardito, A., Ricciardi, P.

论文摘要

特殊黑洞二进制二进制GRS 1915+105的X射线光曲线中的复杂时间演变可以作为普通微分方程的非线性系统的解决方案,形成了Hindmarsch-Rose模型,并根据时间取决于输入函数。在第一篇论文中,假设输入具有超高的白噪声,我们重现了Rho,Chi和Delta类的光曲线。我们使用此数学模型来重现其他八个GRS 1915+105可变性类的光曲线,包括一些考虑变量输入函数或方程参数的小变化。在此扩展模型及其平衡状态的基础上,我们可以将大多数类排列为三种主要类型:i)稳定的平衡模式:(类Phi,Chi,Alpha'',Theta,Xi和Omega类,其光曲线调制均遵循输入功能的同一时间尺度,因为围绕稳定的Equilibibibiribim Points遵循了稳定的时间尺度。 ii)不稳定的平衡模式:以一系列尖峰(RHO类)为特征,该峰值由围绕不稳定平衡点的极限循环发起; iii)过渡模式:(类Delta,Gamma,Lambda,Kappa和Alpha'),其中输入函数的随机变化诱导从稳定到不稳定区域的过渡,起源于缓慢变化或飙升,以及倾角和红噪声的发生。我们基于平衡曲线和通过纤细圆盘方程的数值整合获得的平衡曲线和文献结果之间的相似性,提出了对模型的物理解释。

The complex time evolution in the X-ray light curves of the peculiar black hole binary GRS 1915+105 can be obtained as solutions of a non-linear system of ordinary differential equations derived form the Hindmarsch-Rose model and modified introducing an input function depending on time. In the first paper,assuming a constant input with a superposed white noise, we reproduced light curves of the classes rho, chi, and delta. We use this mathematical model to reproduce light curves, including some interesting details, of other eight GRS 1915+105 variability classes either considering a variable input function or with small changes of the equation parameters. On the basis of this extended model and its equilibrium states, we can arrange most of the classes in three main types: i) stable equilibrium patterns: (classes phi, chi, alpha'', theta, xi, and omega) whose light curve modulation follows the same time scale of the input function, because changes occur around stable equilibrium points; ii) unstable equilibrium patterns: characterised by series of spikes (class rho) originated by a limit cycle around an unstable equilibrium point; iii) transition pattern: (classes delta, gamma, lambda, kappa and alpha'), in which random changes of the input function induce transitions from stable to unstable regions originating either slow changes or spiking, and the occurrence of dips and red noise. We present a possible physical interpretation of the model based on the similarity between an equilibrium curve and literature results obtained by numerical integrations of a slim disc equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源