论文标题
在高斯过程回归模型中,贝叶斯对事件相关电位分析的固定点的推断
Bayesian Inference for Stationary Points in Gaussian Process Regression Models for Event-Related Potentials Analysis
论文作者
论文摘要
嵌入衍生物中的固定点通常对于模型可以解释至关重要,并且可以被视为许多应用中感兴趣的关键特征。我们提出了一个半参数贝叶斯模型,以有效地推断非参数函数的固定点的位置,同时将功能本身视为滋扰参数。我们使用高斯过程作为基础函数的灵活先验,并施加了衍生约束,以通过条件控制该函数的形状。我们制定了一种推论策略,该策略将估计限制为至少一个固定点的情况,绕过固定点数量可能的错误特异性,并避免经常带来计算复杂性的不同维度问题。我们使用模拟说明了提出的方法,然后将该方法应用于源自脑电图(EEG)信号的事件相关电位(ERP)的估计。我们展示了所提出的方法如何在单个级别上自动识别特征成分及其潜伏期,从而避免了跨主题的过度平均,这是在现场通常进行的,以获得平滑的曲线。通过将这种方法应用于语音感知任务中从年轻和老年人收集的脑电图数据,我们可以证明语音感知过程的时间过程如何随着年龄的增长而变化。
Stationary points embedded in the derivatives are often critical for a model to be interpretable and may be considered as key features of interest in many applications. We propose a semiparametric Bayesian model to efficiently infer the locations of stationary points of a nonparametric function, while treating the function itself as a nuisance parameter. We use Gaussian processes as a flexible prior for the underlying function and impose derivative constraints to control the function's shape via conditioning. We develop an inferential strategy that intentionally restricts estimation to the case of at least one stationary point, bypassing possible mis-specifications in the number of stationary points and avoiding the varying dimension problem that often brings in computational complexity. We illustrate the proposed methods using simulations and then apply the method to the estimation of event-related potentials (ERP) derived from electroencephalography (EEG) signals. We show how the proposed method automatically identifies characteristic components and their latencies at the individual level, which avoids the excessive averaging across subjects which is routinely done in the field to obtain smooth curves. By applying this approach to EEG data collected from younger and older adults during a speech perception task, we are able to demonstrate how the time course of speech perception processes changes with age.