论文标题
部分功能代数的分类二元性
A categorical duality for algebras of partial functions
论文作者
论文摘要
我们证明,部分功能的一类抽象代数与一类(小)拓扑类别之间的二元性。代数是在组成,抗体域,范围和优先联合(或“ Override”)的操作下封闭的部分功能集合的同构。拓扑类别是那些物体空间是石材空间,源图是局部同构形态,目标图是打开的,并且所有箭头都是象征性的。
We prove a categorical duality between a class of abstract algebras of partial functions and a class of (small) topological categories. The algebras are the isomorphs of collections of partial functions closed under the operations of composition, antidomain, range, and preferential union (or 'override'). The topological categories are those whose space of objects is a Stone space, source map is a local homeomorphism, target map is open, and all of whose arrows are epimorphisms.