论文标题
新型黑洞相变的范围通过大量重力:三重点和n倍返回相变
Range of novel black hole phase transitions via massive gravity: Triple points and N-fold reentrant phase transitions
论文作者
论文摘要
抗DE保姆时空中的大量重力可以看作是凝结物质系统不同阶段的有效双场理论,其转化对称性破裂,例如固体,(完美)流体和液晶。在这一事实的激励下,我们探索了这些理论的黑洞化学(BHC),并在普通物理系统中找到了与现实的新型相变的新范围。我们发现,拓扑黑洞(TBH)在其拐点处的拓扑状态方程(TBHS)在$ d $二维的时空中的方程式降低了$ $ $ $(D-4)$的多项式方程,该方程可产生高达$ n =(d-4)$的关键点。结果,对于(中性)TBHS,我们观察到具有相关一阶相变的三分现象(以$ d \ ge 7 $)和一个新的现象,我们称为$ n $ fold的回归相变,其中几个($ n $)的几个($ n $)区域的热力相位空间相关阶段和相关的重新转变,并与范围相关的相关级别 - 范围和范围的范围 - 在范围内 - 在范围内 - 在范围内 - 逐渐界定范围 - 在范围内,范围界定了范围,这些订单和范围范围内曾经是范围内的范围,并在其中界定了范围(范围内的范围)。 $ d \ ge 8 $),以及范德华过渡(以$ d \ ge 5 $)和重新进入($ d \ ge 6 $)行为。我们得出的结论是,在高度大型重力中,BHC很可能会带来更多新的惊喜。
Massive gravities in anti-de Sitter spacetime can be viewed as effective dual field theories of different phases of condensed matter systems with broken translational symmetry such as solids, (perfect) fluids, and liquid crystals. Motivated by this fact, we explore the black hole chemistry (BHC) of these theories and find a new range of novel phase transitions close to realistic ones in ordinary physical systems. We find that the equation of state of topological black holes (TBHs) at their inflection point(s) in $d$-dimensional spacetime reduces to a polynomial equation of degree $(d-4)$, which yields up to $n=(d-4)$ critical points. As a result, for (neutral) TBHs, we observe triple-point phenomena with the associated first-order phase transitions (in $d \ge 7$), and a new phenomenon we call an $N$-fold reentrant phase transition, in which several ($N$) regions of thermodynamic phase space exhibit distinct reentrant phase transitions, with associated virtual triple points and zeroth-order phase transitions (in $d \ge 8$), as well as Van der Waals transitions (in $d \ge 5$) and reentrant (in $d \ge 6$) behavior. We conclude that BHC in higher-dimensional massive gravity is very likely to offer further new surprises.