论文标题

用于多模式数据处理的SPD矩阵歧管上的光谱流

Spectral Flow on the Manifold of SPD Matrices for Multimodal Data Processing

论文作者

Katz, Ori, Lederman, Roy R., Talmon, Ronen

论文摘要

在本文中,我们考虑了由多模式传感器获取的数据,这些传感器捕获了测量现象的互补方面和特征。我们关注的是一种具有可变性的相互源但也可能受到其他特定特定特定来源(例如干扰或噪声)污染的方案。我们的方法结合了多种学习,这是一类非线性数据驱动的降低方法,以及众所周知的对称和阳性(SPD)矩阵的Riemannian几何形状。流动学习通常包括对测量构建的内核的光谱分析。在这里,我们采用了不同的方法,利用了内核的riemannian几何形状。特别是,我们研究了SPD矩阵歧管上的核沿大地路径变化的方式。我们表明,这一变化使我们以一种纯粹的无监督方式得出了对测量的基础组成部分的紧凑而有益的描述。基于此结果,我们提出了用于提取常见的潜在组件并识别常见和测量特定组件的新算法。

In this paper, we consider data acquired by multimodal sensors capturing complementary aspects and features of a measured phenomenon. We focus on a scenario in which the measurements share mutual sources of variability but might also be contaminated by other measurement-specific sources such as interferences or noise. Our approach combines manifold learning, which is a class of nonlinear data-driven dimension reduction methods, with the well-known Riemannian geometry of symmetric and positive-definite (SPD) matrices. Manifold learning typically includes the spectral analysis of a kernel built from the measurements. Here, we take a different approach, utilizing the Riemannian geometry of the kernels. In particular, we study the way the spectrum of the kernels changes along geodesic paths on the manifold of SPD matrices. We show that this change enables us, in a purely unsupervised manner, to derive a compact, yet informative, description of the relations between the measurements, in terms of their underlying components. Based on this result, we present new algorithms for extracting the common latent components and for identifying common and measurement-specific components.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源