论文标题
使用混合分辨率数据的贝叶斯参数估计的资源分配和抖动
Resource Allocation and Dithering of Bayesian Parameter Estimation Using Mixed-Resolution Data
论文作者
论文摘要
信号的量化是现代信号处理应用程序(例如传感,通信和推理)的组成部分。虽然信号量化提供了许多物理优势,但通常会降低基于量化数据的后续估计性能。为了维持物理约束并同时带来了可观的绩效增益,在这项工作中,我们考虑具有混合分辨率,1位量化且连续价值的数据的系统。首先,我们描述了一般混合分辨率模型的线性最小均方误差(LMMSE)估计器及其相关的于点误差(MSE)。但是,LMMSE的MSE需要矩阵反转,其中测量数定义了矩阵尺寸,因此不是用于优化和系统设计的可拖动工具。因此,我们介绍了线性高斯正顺序(LGO)测量模型,并在此模型下得出LMMSE估计量MSE的封闭形式的分析表达。此外,我们提供了两个级别模型的常见特殊情况:1)标量参数估计和2)混合ADC多输入多输出(MIMO)通信系统中的通道估计。然后,我们将LGO模型的资源分配优化问题以MSE的提议的可处理形式作为目标函数,并使用一维搜索在功率约束下解决。此外,我们介绍了混合分辨率模型的抖动概念,并优化了两个抖动方案的资源分配优化问题的一部分:1)仅在量化的测量中添加噪声; 2)在两种测量类型中添加噪声。最后,我们提出了模拟,这些模拟证明了使用混合分辨率测量以及通过抖动和资源分配引入的可能改进的优势。
Quantization of signals is an integral part of modern signal processing applications, such as sensing, communication, and inference. While signal quantization provides many physical advantages, it usually degrades the subsequent estimation performance that is based on quantized data. In order to maintain physical constraints and simultaneously bring substantial performance gain, in this work we consider systems with mixed-resolution, 1-bit quantized and continuous-valued, data. First, we describe the linear minimum mean-squared error (LMMSE) estimator and its associated mean-squared error (MSE) for the general mixed-resolution model. However, the MSE of the LMMSE requires matrix inversion in which the number of measurements defines the matrix dimensions and thus, is not a tractable tool for optimization and system design. Therefore, we present the linear Gaussian orthonormal (LGO) measurement model and derive a closed-form analytic expression for the MSE of the LMMSE estimator under this model. In addition, we present two common special cases of the LGO model: 1) scalar parameter estimation and 2) channel estimation in mixed-ADC multiple-input multiple-output (MIMO) communication systems. We then solve the resource allocation optimization problem of the LGO model with the proposed tractable form of the MSE as an objective function and under a power constraint using a one-dimensional search. Moreover, we present the concept of dithering for mixed-resolution models and optimize the dithering noise as part of the resource allocation optimization problem for two dithering schemes: 1) adding noise only to the quantized measurements and 2) adding noise to both measurement types. Finally, we present simulations that demonstrate the advantages of using mixed-resolution measurements and the possible improvement introduced with dithering and resource allocation.