论文标题

时间序列预测与高斯流程需要先验

Time series forecasting with Gaussian Processes needs priors

论文作者

Corani, Giorgio, Benavoli, Alessio, Zaffalon, Marco

论文摘要

自动预测是接收时间序列并在不进行任何人工干预的情况下返回下一步步骤的预测的任务。高斯流程(GPS)是建模时间序列的强大工具,但是到目前为止,基于GPS的自动预测尚无竞争方法。我们提出了两个问题的实用解决方案:自动选择最佳内核和对超参数的可靠估计。我们提出了固定的内核组成,其中包含建模大多数时间序列所需的组件:线性趋势,周期性模式和其他灵活的内核,用于建模非线性趋势。并非所有组件对于每个时间序列进行建模都是必需的。在训练过程中,不必要的组件通过自动相关性确定(ARD)自动使其无关。此外,我们将先验者分配给超参数,以使推理保持在合理的范围内;我们通过经验贝叶斯的方法来设计这样的先验。我们在许多不同类型的时间序列上介绍了结果。我们的GP模型比最新的时间序列模型更准确。多亏了先验,单个重新启动就足够估计了超参数。因此,该模型也很快训练。

Automatic forecasting is the task of receiving a time series and returning a forecast for the next time steps without any human intervention. Gaussian Processes (GPs) are a powerful tool for modeling time series, but so far there are no competitive approaches for automatic forecasting based on GPs. We propose practical solutions to two problems: automatic selection of the optimal kernel and reliable estimation of the hyperparameters. We propose a fixed composition of kernels, which contains the components needed to model most time series: linear trend, periodic patterns, and other flexible kernel for modeling the non-linear trend. Not all components are necessary to model each time series; during training the unnecessary components are automatically made irrelevant via automatic relevance determination (ARD). We moreover assign priors to the hyperparameters, in order to keep the inference within a plausible range; we design such priors through an empirical Bayes approach. We present results on many time series of different types; our GP model is more accurate than state-of-the-art time series models. Thanks to the priors, a single restart is enough the estimate the hyperparameters; hence the model is also fast to train.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源