论文标题

空心蜂窝阵列中非平衡极化子的拓扑边缘状态

Topological edge states of nonequilibrium polaritons in hollow honeycomb arrays

论文作者

Ma, Xuekai, Kartashov, Yaroslav V., Ferrando, Albert, Schumacher, Stefan

论文摘要

我们解决了有限的微型玻璃柱中的均匀谐振泵激发的极化式凝结物中的拓扑电流,中间有一个孔。这种电流是在旋转轨道耦合的组合作用和齐曼分裂的结合作用下产生的,该动作打破了时间反转的对称性并在结构光谱中打开拓扑间隙。该结构的最具代表性特征是存在两个界面,即内部和外部,其中拓扑电流的方向相反。由于结构的有限尺寸,极性 - 波利顿相互作用导致内部和外部接口处的边缘状态的耦合,这取决于空心区域的大小。此外,可以通过调整泵频率来实现电流之间的切换。我们说明,这种有限结构中的电流可能是稳定的,并研究由于泵的共振特征而产生的双态效应。

We address topological currents in polariton condensates excited by uniform resonant pumps in finite honeycomb arrays of microcavity pillars with a hole in the center. Such currents arise under combined action of the spin-orbit coupling and the Zeeman splitting that break the time-reversal symmetry and open a topological gap in the spectrum of the structure. The most representative feature of this structure is the presence of two interfaces, inner and outer ones, where the directions of topological currents are opposite. Due to the finite size of the structure polariton-polariton interactions lead to the coupling of the edge states at the inner and outer interfaces, which depends on the size of the hollow region. Moreover, switching between currents can be realized by tuning the pump frequency. We illustrate that currents in this finite structure can be stable and study bistability effects arising due to the resonant character of the pump.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源